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Abstract
Compared to pure fluids, binary mixtures display a very diverse phase
behaviour, which depends sensitively on the parameters of the microscopic
potential. Here we investigate the phase diagrams of simple model mixtures
by use of a microscopic implementation of the renormalization group
technique. First, we consider a symmetric mixture with attractive interactions,
possibly relevant for describing fluids of molecules with internal degrees of
freedom. Despite the simplicity of the model, slightly tuning the strength
of the interactions between unlike species drastically changes the topology
of the phase boundary, forcing or inhibiting demixing, and brings about
several interesting features such as double critical points, tricritical points,
and coexistence domains enclosing ‘islands’ of homogeneous, mixed fluid.
Homogeneous phase separation in mixtures can be driven also by purely
repulsive interactions. As an example, we consider a model of soft particles
which has been adopted to describe binary polymer solutions. This is shown
to display a demixing (fluid–fluid) transition at sufficiently high density. The
nature and the physical properties of the corresponding phase transition are
investigated.

The phase diagram of binary mixtures may show several transition lines, usually related to
the physically different processes of demixing and liquid–vapour phase separation [1]. While
the ordinary liquid–vapour phase transition is driven by the presence of attractive interactions,
demixing may occur also in purely repulsive fluids and even in strongly asymmetric, athermal
(i.e. hard-core) systems. However, inspecting the composition of the phases at coexistence
generally reveals a more structured scenario where both densities and compositions of the
phase-separated fluids differ. Even in rare-gas mixtures, like the Ne–Kr system, the character
of the transition can change from liquid–vapour at low pressure to mainly mixing–demixing
at high pressure. This behaviour requires a generalization of the concept of order parameter,
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allowing for linear combinations of density and concentration fluctuations: by moving along
a critical line, the nature of the order parameter, i.e. the weights of density and concentration
fluctuations in the linear combination, smoothly changes signalling the change in the physical
character of the transition. As a result, an ample variety of phase diagram topologies are
possible in mixtures, and it is not surprising that small changes in the interaction parameters
may have a crucial effect in determining important physical properties of the system, like the
miscibility of two fluids at given pressure conditions.

In ordinary simple fluids, this sensitivity of the phase diagram to small changes in the
interaction has not attracted much interest in the past, because we have little possibility to
affect the form of the interaction at the molecular level. However, a considerably richer
scenario opens up in the framework of complex fluids. If the constituents of our mixtures
are polymers, colloids, or micelles, their mutual interaction is mediated by the solvent and
then it depends on several properties which may be suitably modified, such as polymer-chain
lengths or salt concentration. It is therefore important to investigate how (small) changes in
the interparticle potentials affect the global phase diagram and the structure of the mixture and
whether it is possible to switch from one topology of the phase diagram to another by simply
acting on the form of the effective interactions: physically, this means that by making small
changes in the properties of the solvent we may ‘turn on’ strong concentration fluctuations in
the system, driving mixing or demixing.

Liquid-state theory offers several methods which allow the investigation of this
problem [2]. A classical approach, which has been widely exploited in the past, is to resort to
mean-field theory (MFT) which has the considerable advantages of requiring very modest (if
any) computational effort and of providing the full phase diagram of the model. However, the
main drawbacks of MFT are the complete neglect of fluctuations, extremely relevant close to
phase transitions, and the insensitivity to the shape of the interactions, which are known to play
an important role in complex fluids5. A more sophisticated route to the theoretical investigation
of phase diagrams is represented by the integral equation approach. This method is designed to
study correlation functions and now the best integral equations (the modified hypernetted chain
or the Rogers–Young equations) provide a remarkably accurate representation of the structure
of the model. Thermodynamics instead is obtained via the use of sum rules, but the resulting
phase diagram often depends on the chosen route and suffers from a lack of convergence of
the theory in the critical region, casting doubts on the accuracy of the method. The most
reliable method for investigating phase coexistence in fluids is probably the Gibbs ensemble
Monte Carlo method which proved quite successful in several different situations. However,
simulations are rather time consuming, mainly because they provide information on a single
thermodynamic state of the system. The possibility of mapping a large portion of the phase
diagram is therefore hindered by the computational burden.

In this work, we present an investigation of the phase diagram of few simple models of
binary mixtures by use of the hierarchical reference theory of fluids (HRT) [3], a method
explicitly devised for studying the thermodynamics of liquids and gases which allows for
the development of long-range fluctuations and consistently enforces the convexity of the
free energy. The method is based on a splitting of the interaction into a repulsive-core part,
treated as a reference system, and a ‘long-range’ tail which is supposed to drive possible phase
transitions. The effects on the thermodynamics of the long-range part are then introduced
in the free energy recursively, starting from short wavelengths in a way which resembles the
renormalization group strategy. HRT is especially useful for determining the phase boundaries

5 A typical example is furnished by depletion (effective) interactions, characterized by a remarkably short range
which makes MFT grossly inaccurate.
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Figure 1. Density–concentration coexistence regions of the symmetric HCY mixture for: T =
1.02, � = 0.6 (left panel); and T = 1.02, � = 0.67 (right panel). The quantities ρ and x are
respectively the total density ρ = ρ1 +ρ2 in reduced units and the relative concentration x = ρ2/ρ.
The greyscale is a measure of pressure (black: low pressure; white: high pressure). A few tie lines
are also shown.

and the equation of state of microscopic models where energy-driven phase transitions are at
play. It has been tested both in fluid and lattice systems,and accurate results have been obtained.
A generalization to mixtures has been already numerically implemented both for lattice and off-
lattice systems [4]. Here we discuss the phase diagram of a symmetric mixture when the ratio
� between the unlike and the like attractive interactions is varied. The interparticle interactions
wi j(r) were modelled by a hard-core Yukawa (HCY) potential such that wi j(r) = +∞ for
r < σ and wi j(r) = −εi j exp[−z(r −σ)]/r for r > σ , where i , j refer to the particle species,
ε11 = ε22, ε12 = �ε11, σ is the particle diameter, and z is the inverse-range parameter, which
we fixed at z = 1.8σ−1. Full details regarding the computations will soon be available [5]. A
similar model has been already studied by Monte Carlo methods [6]. This system offers an
interesting example of competition between liquid–vapour and mixing–demixing transitions.
As can be appreciated from figure 1, an increase by just 10% of the unlike interaction � leads
to the formation of a stable mixed phase at liquid density and equimolar concentration. While
for � = 0.6 the two fluids are miscible only in the gas phase, for � = 0.67, at the same
temperature, the two fluids mix also in the liquid region, i.e. at density up to ρσ 3 ∼ 0.5.
In such a hypothetical system, by slightly tuning the interaction, we may therefore inhibit
demixing at high pressures. Criticality in this symmetric binary mixture presents a rich variety
of different behaviours. For instance, at � = 0.67, up to six critical points are present for each
temperature in a small range below T ∗ = 1.03. Well above this characteristic temperature, the
system displays an ordinary consolute critical point which then turns into a tricritical point (an
artifact due to the symmetry of the model). Below T ∗ one pair of (liquid–vapour) critical points
merges, giving rise to a double critical point, and then disappears. The remaining four critical
points then merge in pairs (at T ∗ ∼ 1.0235) leaving an ‘island’ in the density–concentration
plane where the mixed liquid is stable. On further lowering the temperature, this one-phase
domain shrinks, until it is eventually swallowed by the coexistence region. The phase diagram
in the (ρ, T ) plane at equimolar concentration is shown in figure 2.

Up to now we have analysed mixtures where phase transitions are driven by attractive
potentials. However, colloidal suspensions are often characterized by purely repulsive
interactions [7] and we may enquire whether in this case also the topology of the phase diagram
depends on the details of the interaction. Some sensitivity to the specific form of the interaction
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Figure 2. The equimolar section of the density–temperature phase diagram of the symmetric HCY
mixture for � = 0.67.

in these systems has already been conjectured as regards the freezing transition [8]. We have
investigated, by means of HRT, the Gaussian-core model (GCM), whose interparticle potential
has the form

βv(r) = ε exp(−r2/σ 2) (1)

which has been proposed as an effective model for dilute and semi-dilute polymer solutions [9].
Here the interaction is purely repulsive and has entropic origin, being due to the self-avoidance
of the polymer coils. The strength of the interaction depends on the number of monomers in
the polymer. A characteristic feature of this model is the allowance of full overlap between
‘particles’. This apparently unphysical feature originates from the fact that in the effective
model considered, a particle just represents the centre of mass of the polymer, i.e. a geometric
point and not a physical particle. No phase transition between homogeneous phases is observed
in this model [10]. A two-component system of Gaussian-core ‘molecules’ has also been
investigated both when the unlike interaction ε12 is larger than the like ones ε11 = ε22 and
in the opposite case [11, 12]. Note that in this model with purely repulsive interactions the
liquid–vapour transition does not occur, and in order to trigger the demixing transition positive
non-additivity in the core radii combination rule would be required if � ≡ ε12/ε11 < 1.

HRT appears particularly suitable for treating this class of effective interactions because it
has been shown [10, 13] that the momentum dependence of the partial structure factors is well
represented by the simple mean-field approximation in a large portion of the phase diagram.
This is of great help in devising the closure relation necessary to write the formally exact HRT
equation in a manageable form. In figure 3 (left panel) we report the density–concentration
phase diagram of the GCM for a few choices of the interaction parameters, compared with
the results obtained from the MFT and HNC equation [11]. We remark that, for given �,
the MFT phase boundaries for different interaction strengths ε11 collapse onto the same curve
when plotted in the units used in the figure [11], while this is not the case with either the HNC
theory or HRT. However, even according to these theories the changes induced by a significant
increase in the interaction are just quantitative, while the overall topology of the phase diagram
remains unaltered. When the strength of the unlike interaction grows, HRT pushes the phase
boundary to higher densities with respect to HNC theory. A remarkable flattening of the phase
boundaries is also predicted by HRT. In fact, the HRT binodals reported in the figure show
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Figure 3. Left panel: phase boundaries of the symmetric Gaussian-core mixture in the density–
concentration plane for ε11 = 0.1 (triangles), ε11 = 1 (squares), ε11 = 2 (circles), and ε12 = 2ε11.
Full symbols: HRT results; open symbols: HNC data; solid curve: mean-field binodal. Here
ρ = ρ1 + ρ2, x = ρ2/ρ, and ṽ11(0) = π3/2ε11σ

3. Right panel: two-body partial correlation
functions of the same model in the case of ε11 = 0.1 obtained via HRT (curves) for two
thermodynamic states with x = 0.9 and different densities: ρσ 3 = 2 (lower curves) and ρσ 3 = 4
(upper curves). Dots represent HNC data for ρσ 3 = 2.

portions that are completely straight, but this is due to the finite-density mesh used in the
computation. This applies also to the small jumps in the form of the binodals.

Accurate Monte Carlo simulations based on this model may be useful for resolving the
discrepancy between the two approaches. A snapshot of correlations is reported in the left panel
where some clustering of the minority species, due to the softness of the repulsive interaction,
can be seen close to the demixing transition [11].

The effective Hamiltonian approach to complex fluids is intimately related to the possibility
of tracing out degrees of freedom. However, we point out that in the class of models
characterized by soft interactions this powerful technique, which is at the very basis of
the concept of depletion interactions, may lead to unphysical results. As an example, we
consider the Gaussian-core mixture where an accurate free energy functional has been already
introduced [10, 12, 13]. If we ‘freeze’ the degrees of freedom of the N1 particles of species ‘1’ in
a given, arbitrary, configuration {Ri}, the free energy functional of the gas of particles ‘2’ in this
inhomogeneous external potential can be accurately represented in mean-field approximation:

F[ρ(r)] = Fid[ρ(r)] + 1
2

∫
dr1

∫
dr2 ρ(r1)ρ(r2)v22(r1 − r2)

+
∑

i

∫
dr v12(r − Ri)ρ(r). (2)

This functional must be minimized in order to obtain the actual density profile ρ(r) of particles
‘2’ subject to the number conservation constraint

∫
dr ρ(r) = N2. The calculation can be

carried out analytically for weak inhomogeneity and the resulting density profile is given by

ρ(r) = ρ0

[
1 −

∑
i

�ρ(r − Ri)

]

�ρ(r) =
∫

dq

(2π)3
exp(iq · r)

βv12(q)

1 + ρ0βv22(q)

(3)

where ρ0 is determined by imposing the constraint. By substituting equation (3) into (2) we
obtain the two-body effective interaction experienced by particles ‘1’ due to the presence of
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particles ‘2’, which turns out to be globally attractive:

veff (q) = −βρ2
v12(q)2

1 + ρ2βv22(q)
. (4)

In the limit v22(r) = 0 and weak unlike interaction the procedure becomes exact and still
predicts purely attractive interactions, which may drive the system to a collapse: a clearly
unphysical result for a model with only repulsive terms! Actually, many-body contributions
to the effective interaction, which are obtained by including higher orders in the minimization
of the free energy but are usually disregarded, eventually stabilize the effective model. The
analysis of this toy model suggests that many-particle terms in the effective Hamiltonian are
likely to play a crucial role in systems where particle overlap is not inhibited. This is also
supported by the analysis put forward in [14]. In that work, effective two-body forces in
ternary Gaussian mixtures were investigated by considering two big particles in a solvent of
smaller particles at different compositions. Strongly attractive solvent-mediated interactions
were found both in the special case of a pure solvent, and in the more general case where the
solvent is itself a mixture of two species, when a dramatic increase in the effective interaction
can occur as a consequence of preferential adsorption by the big particles. We observe that the
result for veff reported in equation (4) of [14] for a pure solvent and very small solvent/solute
size ratio coincides with that obtained in the same limit from equation (4) of the present work.
Due to the above-mentioned sensitivity of the phase diagram of mixtures to the form of the
interactions, we conclude that many-body forces should be taken into account in deriving the
effective Hamiltonians, especially in soft-core systems.

In summary, we have shown how a classic textbook subject such as the thermodynamics
of binary mixtures may still present open problems when applied to the case of complex fluids.
In particular, attention has been focused on the sensitivity of the phase diagram to the strength
of the unlike interaction and to the possibility of shaping the phase boundaries. Very soft
effective potentials, such as the GCM, are ideal systems for consideration when attempting to
understand the mechanisms underlying phase segregation in purely repulsive, athermal fluids.
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